pyramis vermis - traducción al árabe
Diclib.com
Diccionario ChatGPT
Ingrese una palabra o frase en cualquier idioma 👆
Idioma:

Traducción y análisis de palabras por inteligencia artificial ChatGPT

En esta página puede obtener un análisis detallado de una palabra o frase, producido utilizando la mejor tecnología de inteligencia artificial hasta la fecha:

  • cómo se usa la palabra
  • frecuencia de uso
  • se utiliza con más frecuencia en el habla oral o escrita
  • opciones de traducción
  • ejemplos de uso (varias frases con traducción)
  • etimología

pyramis vermis - traducción al árabe

ANATOMICAL STRUCTURE IN THE BRAIN
Vermis; Vermis of cerebellum; Vermis of the cerebellum; Vermal lobules; Vermal lobule; Vermal; Inferior vermis
  • Lobules of the vermis.
  • Anterior surface of cerebellum. The vermis is highlighted in red.

pyramis vermis      
‎ هَرَمُ الدُّودَة‎
vermal         
دُودِيّ
pyramis         
  • This logo was registered in 1989 and represented the corporate identity of Pyramis for 14 years. During this time Pyramis invested heavily, modernized its equipment and started building systematically its international network.
  • The logo used today became official in March 2002, and Pyramis turned into a more marketing oriented direction, building its brand name, upgrading its offering, and investing in research and development.
A GREEK MULTINATIONAL KITCHEN PRODUCTS CORPORATION, HEADQUARTERED IN THESSALONIKI
Pyramis Group
‎ هَرَم‎

Definición

Pyramis

Wikipedia

Cerebellar vermis

The cerebellar vermis (from Latin vermis, "worm") is located in the medial, cortico-nuclear zone of the cerebellum, which is in the posterior fossa of the cranium. The primary fissure in the vermis curves ventrolaterally to the superior surface of the cerebellum, dividing it into anterior and posterior lobes. Functionally, the vermis is associated with bodily posture and locomotion. The vermis is included within the spinocerebellum and receives somatic sensory input from the head and proximal body parts via ascending spinal pathways.

The cerebellum develops in a rostro-caudal manner, with rostral regions in the midline giving rise to the vermis, and caudal regions developing into the cerebellar hemispheres. By 4 months of prenatal development, the vermis becomes fully foliated, while development of the hemispheres lags by 30–60 days. Postnatally, proliferation and organization of the cellular components of the cerebellum continues, with completion of the foliation pattern by 7 months of life and final migration, proliferation, and arborization of cerebellar neurons by 20 months.

Inspection of the posterior fossa is a common feature of prenatal ultrasound and is used primarily to determine whether excess fluid or malformations of the cerebellum exist. Anomalies of the cerebellar vermis are diagnosed in this manner and include phenotypes consistent with Dandy–Walker malformation, rhombencephalosynapsis, displaying no vermis with fusion of the cerebellar hemispheres, pontocerebellar hypoplasia, or stunted growth of the cerebellum, and neoplasms. In neonates, hypoxic injury to the cerebellum is fairly common, resulting in neuronal loss and gliosis. Symptoms of these disorders range from mild loss of fine motor control to severe mental retardation and death. Karyotyping has shown that most pathologies associated with the vermis are inherited though an autosomal recessive pattern, with most known mutations occurring on the X chromosome.

The vermis is intimately associated with all regions of the cerebellar cortex, which can be divided into three functional parts, each having distinct connections with the brain and spinal cord. These regions are the vestibulocerebellum, which is responsible primarily for the control of eye movements; the spinocerebellum, involved in fine tune body and limb movement; and the cerebrocerebellum, which is associated with planning, initiation and timing of movements.